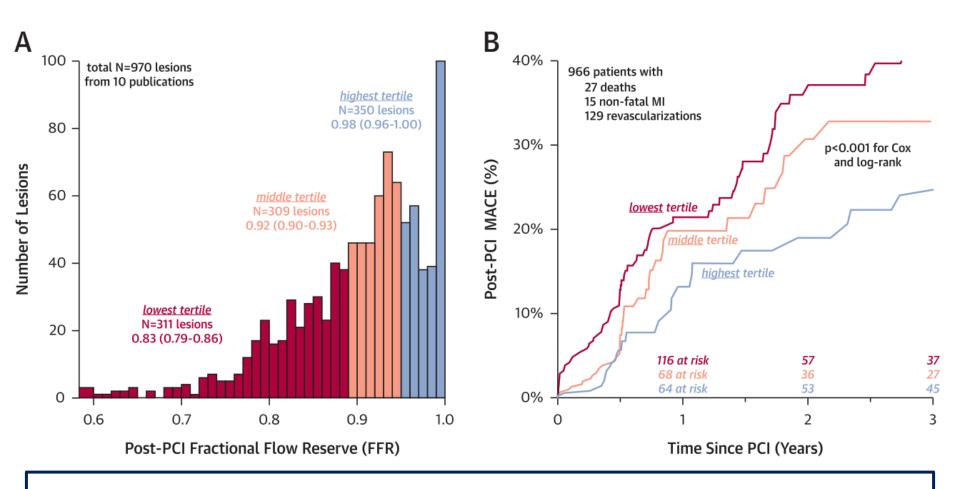
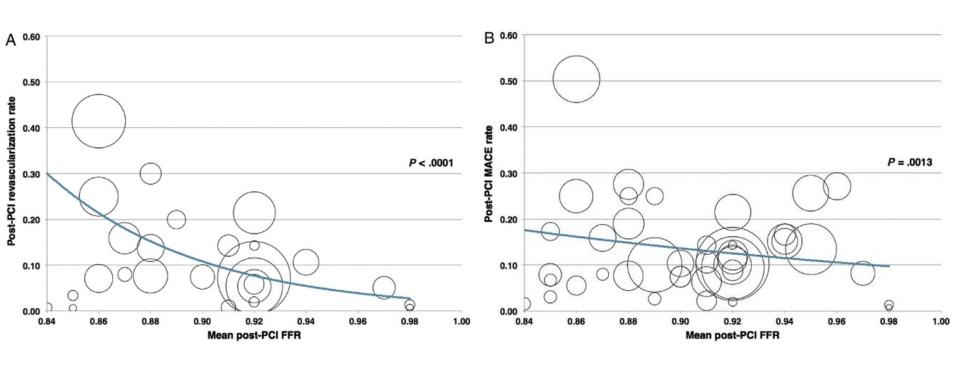
Understanding of Post-PCI FFRPost-PCI FFR and Percent FFR Increase


Joo Myung Lee, MD, MPH, PhD

Heart Vascular Stroke Institute,
Samsung Medical Center, Seoul, Republic of Korea



Post-PCI FFR and Clinical Outcome

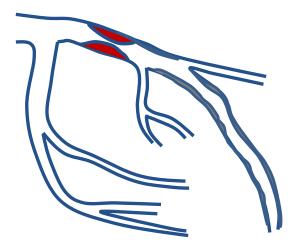
Patient level meta-analysis
Post-PCI FFR showed an inverse relationship with subsequent events
(HR 0.86, 95% CI 0.80-0.93, p<0.001).

Post-PCI FFR and Clinical Outcome

Study level meta-analysis also indicated higher post-PCI FFR values were associated with

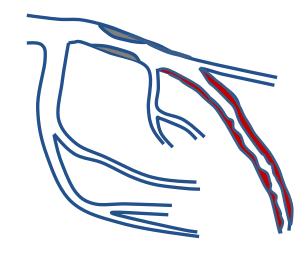
Lower risk of revascularization and MACE.

Post-PCI FFR Various Cut-Off values and C-index for Clinical Outcome


	Patient number	Study period	Clinical presentation	Used stent	Primary outcome	Follow-up duration	BCV	Note				
Pijls et al.	750	2000-2001	No exclusion criteria	BMS	Any death, AMI, TVR	6 months	0.90	BMS data				
Leesar et al.	66	Published in 2011	Excluding ACS	BMS/ DES	MACE	2 years	0.96	BCV was based on previous evidence				
Nam et al.	Published LAD was								independent f low FFR			
riam ot all	Higher post-PCI FFR was associated with better clinical outcomes.											
Matsuo et a	Onti	mal aut at	ff value of no	of DCI	EED wor	o from 0 0	6 to 0	06	able value nplantation			
Doh et al.	Optimal cut-off value of post-PCI FFR were from 0.86 to 0.96, according to study population, definition of outcome, type of device, and included vessels											
Agarwal et a												
Kasula et al												
D: () ()	predicting clinical outcome were consistently low.											
Piroth et al.	039	2010-2012	Stable disease	DEO	VOCE	z years	0.92	Low Pred	d FAME2 ctive value			
Li et al.	1,476	2012-2013	Silent ischemia, SA, UA	DES	TVF	3 years	0.88	0.905 cut-off in LAD 2 nd generation DES				

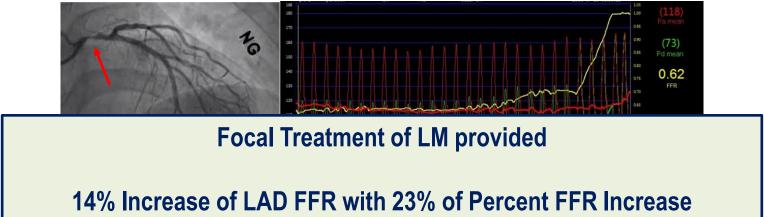
ACS, acute coronary syndrome; AMI, acute myocardial infarction; BCV, best cut-off value; BMS, bare metal stent; DES, drug eluting stent; FFR, fractional flow reserve; LAD, left anterior descending artery; MACE, major adverse cardiac event; NSTEMI, non-ST elevation myocardial infarction; PCI, percutaneous coronary intervention; SA, stable angina; TLR, target lesion revascularization; TVF, target vessel failure; TVR, target vessel revascularization; UA, unstable angina; VOCE, vessel-oriented composite end point

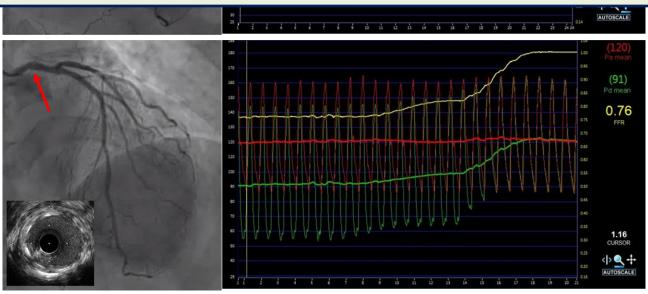
Limited Predictability of Post-PCI FFR Alone Per-Vessel Diagnosis vs. Per-stenosis Treatment


Physiologic Response from Focal Treatment depends on "Relative contribution of focal stenosis on diffuse disease"

Focal >> Diffuse

Higher Physiologic Gain from Stenting Underlying Diffuse Disease (minor component) Reduced Per-vessel Ischemic Burden


Focal << Diffuse



Limited Physiologic Gain from Stenting Underlying Diffuse Disease (major component) Similar Per-vessel Ischemic Burden

Percent FFR Increase

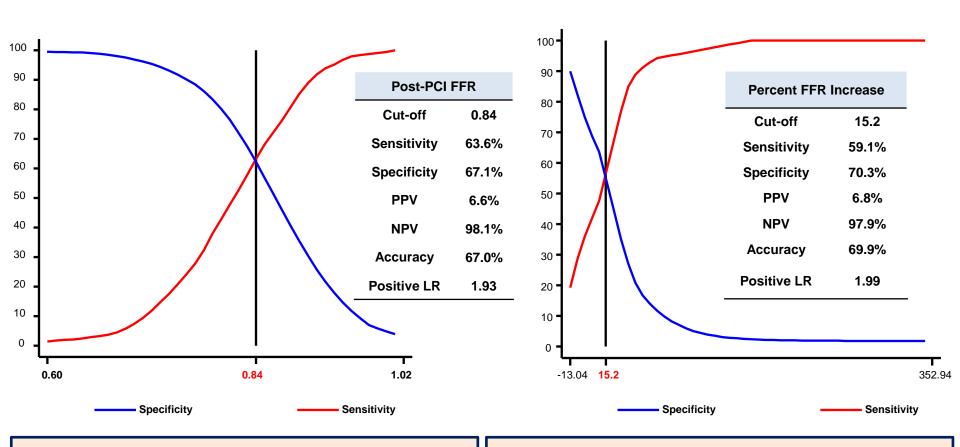
- Relative Contribution of Focal Stenosis, Relieved by Stent -

Percent FFR Increase → [(Post-PCI FFR – Pre-PCI FFR) / (Pre-PCI FFR)] x 100

Example: $(0.76-0.62 / 0.62) \times 100 = 23\%$

Relative increase of FFR (Percent FFR Increase) would provide Additional Prognostic Information?

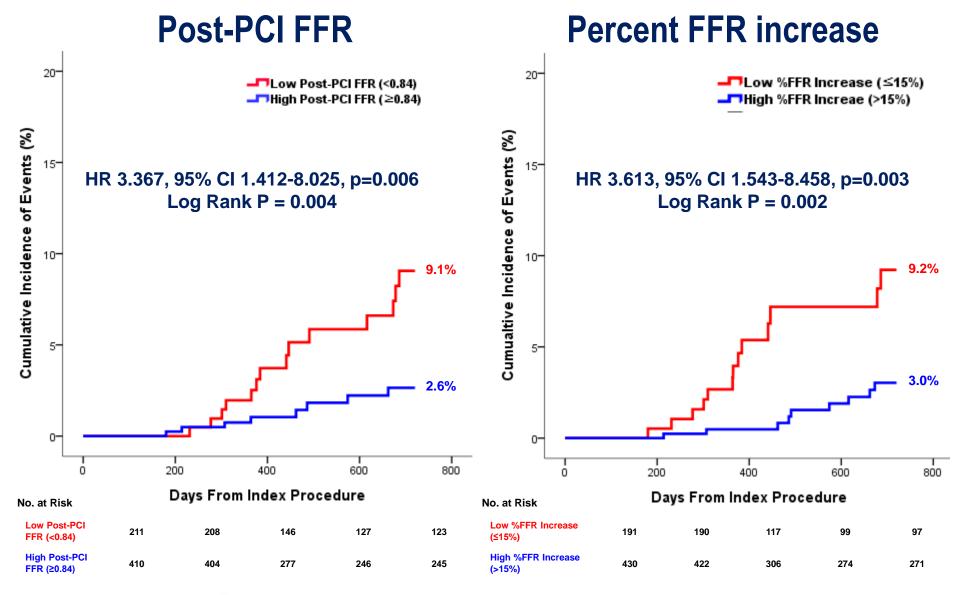
- COE-PERSPECTIVE registry
- 621 Patients who underwent PCI based on low Pre-PCI FFR (≤0.80)
- Underwent PCI and measured FFR after angiographically successful stent implantation (residual stenosis < 20% by visual estimation)
- All patients used 2nd generation DES
- Primary outcome
 - Target vessel failure (TVF) at 2 Years
 - A composite of cardiac death, target vessel related MI and clinically driven TVR
- Prognostic Impact of Absolute and Relative Physiologic Results of PCI
 - Absolute Post-PCI FFR
 - Percent FFR increase



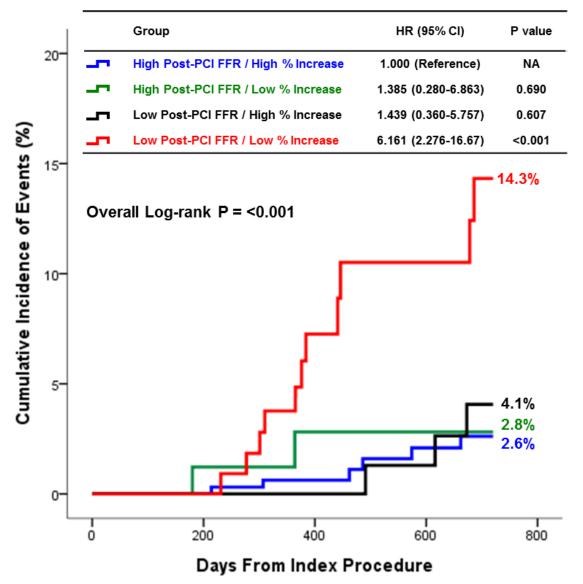
Post-PCI FFR vs. Percent FFR Increase

- Target Vessel Failure at 2 Years -

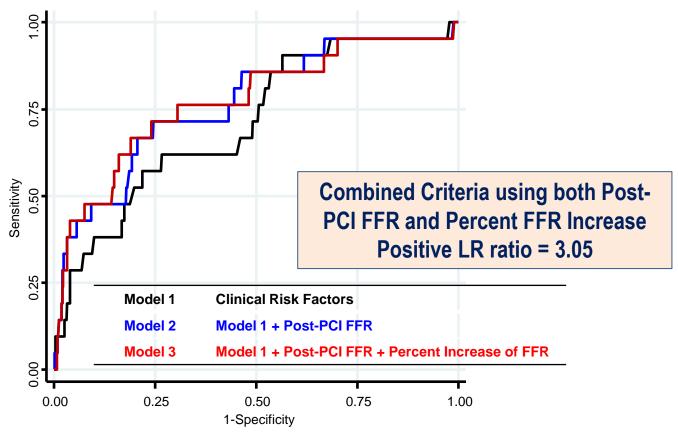
Post-PCI FFR


Percent FFR increase

Post-PCI FFR ≥ 0.84 (Positive LR 1.93)

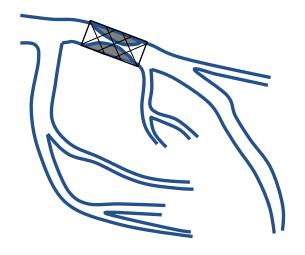

Percent FFR increase ≥ 15% (Positive LR 1.99)

Post-PCI FFR vs. Percent FFR Increase - Target Vessel Failure at 2 Years -



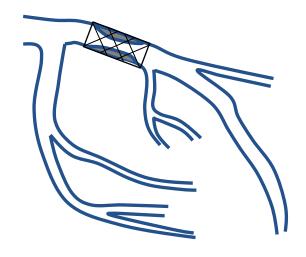
High Percent FFR Increase, But Low Post-PCI FFR - What will be the prognosis? -

Increased Risk Prediction using Both Percent FFR Increase and Post-PCI FFR


	C-index	Relative IDI	P value	NRI	P value	
Model 1	Clinical Risk Factors	0.734				
Model 2	Model 1 + Post-PCI FFR	0.774	0.618	0.006	0.678	0.002
Model 3	Model 2 + Percent FFR Increase	0.783	0.702	0.009	0.479	0.031

Physiologic Response to Focal Treatment

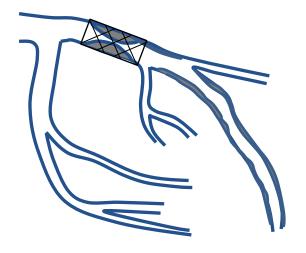
- Predominant Focal Disease -


In Predominant Focal Disease, Physiologic Response from Focal Treatment depends on "Severity of Focal Disease"

Severe Focal Stenosis

Higher Physiologic Gain with PCI (High Percent Increase of FFR) No Residual Disease Burden (High Post-PCI FFR)

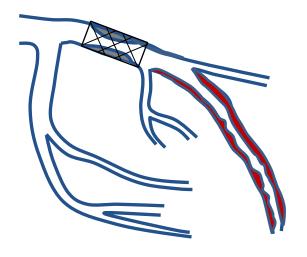
Modest Focal Stenosis


Modest Physiologic Gain with PCI (Low Percent Increase of FFR) No Residual Disease Burden (High Post-PCI FFR)

Physiologic Response to Focal Treatment

- Mixed Focal and Diffuse Disease -

Physiologic Response from Focal Treatment depends on "Relative contribution of focal stenosis on diffuse disease"


Focal >> Diffuse

Higher Physiologic Gain from Stenting (High Percent FFR Increase) **Underlying Diffuse Disease (minor component)** (Low Post-PCI FFR)

Reduced Per-vessel Ischemic Burden (Favorable Outcome)

Diffuse >> Focal

Limited Physiologic Gain from Stenting (Low Percent FFR Increase) **Underlying Diffuse Disease (major component)** (Low Post-PCI FFR) Similar Per-vessel Ischemic Burden

(Worse Clinical Outcome)

Summary

- Post-PCI FFR and Percent FFR increase reflect physiologic results from PCI and both indices possess prognostic implication.
- Physiologic response after stenting depends on "severity of focal stenosis" and "relative contribution of focal and diffuse disease in per-vessel ischemia".
- The physiologic effect of focal stenting has limited role in patients with higher contribution of diffuse disease than focal stenosis. These patients shows low percent FFR increase, low post-PCI FFR, higher risk of future clinical event.
- But, those with higher contribution of focal stenosis in underlying diffuse disease, successful PCI with high percent FFR increase would provide favorable outcome despite low post-PCI FFR.
- Integrated interpretation using both absolute (Post-PCI FFR) and relative (Percent FFR) increase) physiologic results would provide higher predictability for future clinical events.

